If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-16x-5=0
a = 12; b = -16; c = -5;
Δ = b2-4ac
Δ = -162-4·12·(-5)
Δ = 496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{496}=\sqrt{16*31}=\sqrt{16}*\sqrt{31}=4\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{31}}{2*12}=\frac{16-4\sqrt{31}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{31}}{2*12}=\frac{16+4\sqrt{31}}{24} $
| 3(v+3)=-8v-13 | | 6=-5+y/7 | | 6d-(-4d)=14 | | 4(-8-4x)=-48 | | 3=8s+19-6s | | 2(u-17)-4.7=-0.7 | | 4s=5s-8 | | 6y-35=180 | | 6x+5=27,x | | x2+60=229 | | 28x-4=-5x-32 | | 2(2b+4)+5(b-10)=-6 | | 9m-3+m=2m+3 | | 80-x=816 | | 16x+28.50=24x+4.50 | | a+75=100 | | –11p−16=16−9p | | -7(8x+3)=371 | | 5(x+4)-3x=40 | | 19m=-342 | | -3(-x+4)-5x+5=-5 | | 12+-60=11x+55 | | 18b-17b+b-2=8 | | 7v–12=W9v-36 | | ‐3(4x-8)=-36 | | 3x+6=8x-16 | | 3(5x-1)-3(2x-1)=27 | | 2(7x+4)=162 | | -8-2x/3=6 | | -7x+6=7 | | 7(x-3)-4=11x-4(x+6) | | 300-24c=12 |